Celebrating the 2022 Gairdner Awards Luncheon
Tuesday, October 25, 2022
12:00 p.m. – 1:30 p.m.
Fairmont Chateau Laurier, Ottawa
This event is by invitation only.
Special Luncheon hosted by The Honourable Mohamed-Iqbal Ravalia, Senate Representative of the Parliamentary Health Research Caucus, Research Canada, and the Gairdner Foundation.
The Canada Gairdner Awards celebrate the world’s best biomedical and global health researchers. The Gairdner Foundation was established in 1957 with the main goal of recognizing and rewarding international excellence in fundamental research that impacts human health. Annually, seven awards are given; five Canada Gairdner International Awards for biomedical research; one John Dirks Canada Gairdner Global Health Award, specifically for impact on global health issues; and one Canada Gairdner Wightman Award, reserved for a Canadian. More than four hundred awards have been bestowed on laureates from 40 countries and of those awardees, 96 have gone on to receive Nobel Prizes.
Special Guests
Dr. Drew Weissman, MD, Ph.D.
Roberts Family Professor in Vaccine Research; Director Penn Institute for RNA Innovation, Director, Vaccine Research, Infectious Diseases Division; Perelman School of Medicine, University of Pennsylvania
Awarded “For their pioneering work developing nucleoside-modified mRNA and lipid nanoparticle (LNP) drug delivery: the foundational technologies for the highly effective COVID-19 mRNA vaccines”
The Work: Drs. Karikó and Weissman discovered how to engineer mRNA – a molecule that carries instructions for making proteins – so that it could be used to produce the desired protein after introduction into mammalian cells. They overcame the inflammatory activation and rapid degradation of mRNA by modifying the RNA so that it could resist quick breakdown and avoid activating RNA sensors. Despite skepticism from others, Drs. Karikó and Weissman saw the potential of RNA therapeutics for vaccines and other applications and the data kept leading them forward. However, one major challenge remained: how to introduce the mRNA into the body in a way that it would be protected from degradation, and could enter into the cells for protein production.
Dr. Cullis had been working with such packaging systems for the past 50 years. Dr. Cullis is a pioneer in lipid chemistry and the formation of lipid nanoparticles (LNP). From his foundational work, many different clinical applications of LNPs have been developed, such as delivering anticancer drugs to cancer tissues while limiting toxicity in normal tissues. In the case of mRNA the LNP are designed to form a protective bubble around the mRNA and enable delivery to the interior of target cells. The LNP technology is critical to the potency of mRNA vaccines.
Following the emergence of the SARS-CoV2 virus, various teams around the world began working on potential vaccines using the knowledge gained about the mRNA and lipid nanoparticle through decades. The idea for both the Pfizer/BioNTech and Moderna vaccines was to introduce modified mRNA molecules into the body via LNPs to briefly instruct human cells to produce the coronavirus’ spike protein. The LNP-activated immune system would recognize the encoded viral protein and develop antibodies and immune memory so that the immune system would attack the coronavirus when entering the body.
The Impact: The work of Drs. Karikó, Weissman and Cullis enabled the rapid availability of highly effective and safe COVID-19 mRNA vaccines, which has become an important tool for the control of COVID-19 pandemic. Importantly their pivotal discoveries also have the potential to revolutionize the future delivery of effective and safe vaccines, therapeutics and gene therapies. The success of the mRNA vaccines for COVID-19 suggests paths forward for similar vaccines for viral threats like influenza or HIV. Clinical trials are already underway to test mRNA vaccines to prevent diseases, caused by Zika virus, chikungunya and rabies infections.
The COVID-19 mRNA vaccines developed by Pfizer/BioNTech and Moderna are built on over 30 years of established scientific research and highlight the importance of basic and applied research, and international collaboration.
Dr. Deborah J. Cook, MD, FRCPC, MSc (Epid), FRSC, OC
Distinguished University Professor of the Departments of Medicine, and of Health Research Methods, Evidence, and Impact of McMaster University; Fellow, Canadian Academy of Health Sciences; Fellow, Royal Society of Canada; Officer, Order of Canada; critical care physician of St. Joseph’s Healthcare Hamilton
Awarded “For pioneering research that has developed and defined evidence-based critical care medicine in Canada, informing best practices around the world.”
The Work: As the foremost authority in critical care medicine and health research methodology, Dr. Cook’s 30-year contributions to the design and the conduct of practice-changing clinical studies have led to major improvements in the care of hospital’s sickest patients. Her multi-method multi-disciplinary research interests include advanced life support, prevention of ICU-acquired complications, research ethics and end-of-life care.
She has addressed complex ethical challenges as patients receiving technology transition from life to death through the internationally-adopted ‘3 Wishes Project’. This unique inter-professional model of end-of-life care encourages clinicians with different backgrounds to improve the dying experience for hospitalized patients by honouring their lives, easing family grief, and fostering humanism in practice. The 3 Wishes Project helps to identify and meet the needs of patients dying in hospital by eliciting and fulfilling final meaningful wishes for them, which has proven particularly helpful during the pandemic as family visits are limited for hospitalized patients, including those at the end-of-life.
Dr. Cook was a founding member of the first successful critical care research collaboration in the world – the Canadian Critical Care Trials Group – which flourished under her leadership as chair and champion of patient-centred investigator-initiated research.
The Impact: Dr. Cook’s research has helped to alleviate the enormous human and economic costs of critical illness for patients, families, healthcare systems and society. Dr. Cook has designed and conducted several landmark national and international studies on how best to prevent common and often lethal complications of critical illness such as blood clots, lung infections and gastrointestinal bleeding, providing key evidence for reviews and guidelines used at the bedside worldwide. She has passionately improved the field of critical care, reducing morbidity and saving lives in the ICU, impacting critical care practice across the globe. She has also championed compassionate end-of-life care models that impact families, patients and care providers.
Over her career, Dr. Cook has garnered dozens of national and international honours recognizing her outstanding contributions to critical care research. Her research focuses on creating measurable health, social and economic benefits for patients needing advanced life support. Her pioneering research has transformed critical care medicine and has had an enduring global impact on patients, practice, and policy.